Dimensionality Reduction based on Hubness Property using Feature Weighting Method for Clustering
نویسندگان
چکیده
منابع مشابه
Dimensionality Reduction for Distance Based Video Clustering
Clustering of video sequences is essential in order to perform video summarization. Because of the high spatial and temporal dimensions of the video data, dimensionality reduction becomes imperative before performing Euclidean distance based clustering. In this paper, we present non-adaptive dimensionality reduction approaches using random projections on the video data. Assuming the data to be ...
متن کاملFeature Weighting Method Based On Instance Correlation Using Discretization
In Machine Learning Process, several issues arise in identifying a suitable and quality set of features from which a classification model for a particular domain to be constructed. This paper addresses the problem of feature selection for machine learning through discretization approach. RELIEF is considered to be one of the most successful algorithms for assessing the quality of features. RELI...
متن کاملDimensionality Reduction for Spectral Clustering
Spectral clustering is a flexible clustering methodology that is applicable to a variety of data types and has the particular virtue that it makes few assumptions on cluster shapes. It has become popular in a variety of application areas, particularly in computational vision and bioinformatics. The approach appears, however, to be particularly sensitive to irrelevant and noisy dimensions in the...
متن کاملUsing Dimensionality Reduction Methods in Text Clustering
High dimensionality of the feature space is one of the major concerns owing to computational complexity and accuracy consideration in the text clustering. Therefore, various dimension reduction methods have been introduced in the literature to select an informative subset (or sub list) of features. As each dimension reduction method uses a different strategy (aspect) to select a subset of featu...
متن کاملClustering Including Dimensionality Reduction
In this paper new methodologies for clustering and dimensionality reduction of large data sets are illustrated using both a least-squares and maximum likelihood approach. The methodologies are described by both real applications and Monte Carlo simulations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indian Journal of Science and Technology
سال: 2016
ISSN: 0974-5645,0974-6846
DOI: 10.17485/ijst/2016/v9i19/92034